Inexact Proximal Point Methods for Variational Inequality Problems
نویسندگان
چکیده
منابع مشابه
An inexact interior point proximal method for the variational inequality problem
We propose an infeasible interior proximal method for solving variational inequality problems with maximal monotone operators and linear constraints. The interior proximal method proposed by Auslender, Teboulle and Ben-Tiba [3] is a proximal method using a distance-like barrier function and it has a global convergence property under mild assumptions. However, this method is applicable only to p...
متن کاملInexact proximal point method for general variational inequalities
In this paper, we suggest and analyze a new inexact proximal point method for solving general variational inequalities, which can be considered as an implicit predictor–corrector method. An easily measurable error term is proposed with further relaxed error bound and an optimal step length is obtained by maximizing the profit-function and is dependent on the previous points. Our results include...
متن کاملSelf-adaptive inexact proximal point methods
We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form μ(x)= β‖∇f (x)‖η where η ∈ [0,2) and β > 0 is a constant, we obtain convergence to the set of minimizers that is linear for η= 0 and β suffici...
متن کاملInexact Newton Methods for Semismooth Equations with Applications to Variational Inequality Problems
We consider the local behaviour of inexact Newton methods for the solution of a semis-mooth system of equations. In particular, we give a complete characterization of the Q-superlinear and Q-quadratic convergence of inexact Newton methods. We then apply these results to a particular semismooth system of equations arising from variational inequality problems, and present a globally and locally f...
متن کاملAugmented Lagrangian methods for variational inequality problems
We introduce augmented Lagrangian methods for solving finite dimensional variational inequality problems whose feasible sets are defined by convex inequalities, generalizing the proximal augmented Lagrangian method for constrained optimization. At each iteration, primal variables are updated by solving an unconstrained variational inequality problem, and then dual variables are updated through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2010
ISSN: 1052-6234,1095-7189
DOI: 10.1137/080733437